Login
Sep. 30, 2024
OUSHANG SOLAR Product Page
This article compares 60-cell and 72-cell solar panels, highlighting their differences and best uses. The key distinction between them is size, with 72-cell panels being larger due to having 12 more solar cells. 60-cell panels are typically used in residential and mobile applications, while 72-cell panels are common in utility-scale projects.
While 72-cell panels are generally rated at higher wattages, the cost per watt is crucial in determining which panel is more cost-efficient. Factors like installation costs also play a role, with 72-cell panels often being preferred for large-scale installations due to requiring less racking material and fewer electrical connections. When choosing between the two, consider your space constraints and budget. 60-cell panels are ideal for limited spaces, while 72-cell panels may be more cost-efficient in certain scenarios. Ultimately, the goal is to maximize your budget and solar power potential.
The two most common types of solar panels on the market today are 60-cell and 72-cell. Today, we explain the differences between these two types of solar panels and which one is best for your solar installation.
What is the Difference Between 60-cell and 72-cell Solar Panels?
When it comes down to it, the only real key difference between 60-cell and 72-cell solar panels is size. Solar panels use individual solar cells that you can see as the squares that make up the panel. Obviously, 72-cell solar panels have 12 more solar cells than 60-cell solar panels.
The extra dozen solar cells cause 72-cell solar panels to be larger than the 60-cell solar panels. According to Medium.com, here are the average sizes of these two types of solar panels:
60-cell solar panels are 1.65m (5.41 feet) tall and weigh about 20kg (44.90 lbs).
72-cell solar panels are 1.95m (6.40 feet) tall and weigh about 28kg (61.73 lbs).
For sizing reasons alone, 60-cell solar panels are often used in residential and mobile applications, whereas 72-solar panels are commonplace in utility-scale projects where limited space is not an issue.
Wattage and Power Output of 60-Cell and 72-Cell Solar Panels
It is logical to think that more solar cells imply more solar power, but this is not always the case. Although 72-cell solar panels are generally rated at higher wattages, in some instances, 60-cell solar panels may have more output capacity than 72-cell solar panels. The most important factor in figuring out which solar panel is best for the price is determining the cost per watt.
Lets take a look at two different solar panels. The first is a 300W 60-cell solar panel that costs $200. The second is a 350W 72-cell solar panel that costs $225. The cost per watt of each solar panel respectively would be $0.66 and $0.64. Therefore, if you have room for either type of panel, in this case, the 72-cell solar panel would be more cost-efficient. Although the difference may seem insignificant, accounting for multiple panels over many years, maximizing your cost per watt will lead to the largest financial savings.
Cost of Installing 60-Cell and 72-Cell Solar Panels
In large-scale commercial or utility applications, installers tend to use 72-cell solar panels to save money on installation costs because 72-cell solar panels require less racking material, fewer electrical connections, and fewer security clamps than 60-cell solar panels. Of course, if you boiled these costs down to a residential solar install, there would still be some savings incurred, but at a lower rate.
Your solar panels also influence the rest of your system. If you plan to use micro-inverters instead of one large solar inverter, you will need to make sure that each is appropriately sized for your solar panels, especially when using 72-cell solar panels. Conversely, if you are powering a battery bank, one 60-cell solar panel alone may not provide enough voltage to charge the battery.
Final Words
When designing your solar energy system, either 60-cell or 72-cell solar panels will be best for your needs. If you are strapped for space for your system, for example, on a residential roof, van, or an RV, choosing 60-cell solar panels will maximize the number of panels you can install. If you have space, weigh your options and choose the panel that is most efficient and affordable. After all, when installing solar, the goal is always to maximize your budget and solar power potential!
We hope we provided some insight into choosing your solar panels. You can compare your options by browsing our selection of solar panels or contact us to discuss your project with a solar power expert.
Struggling to understand how solar + storage systems actually work? Looking to build or buy your own solar power system one day but not sure what you need? Just looking to learn more about solar, batteries and electricity?
Join 15,000+ solar enthusiasts breaking free from their energy dependence with this short step-by-step video course that will make you a solar + storage expert. Start your journey to energy independence today.
Learn More Now
ShopSolar.com is the #1 digital platform that enables consumers & businesses to source and purchase complete solar + storage solutions direct, saving you thousands in time, energy and money! With over 40,000+ happy customers, were on a mission to make solar simple, transparent and affordable.
The push for renewable energy sources has led to a surge in solar energy use. In the past decade alone, the solar industry grew by almost 50%, buoyed by federal support such as the
Solar Investment Tax Credit
and strong commercial and industrial demand for clean energy.
As the solar sector continues to rise, its worth studying the backbone of the solar industry: solar panels.
This guide will illustrate the different types of solar panels available on the market today, their strengths and weaknesses, and which is best suited for specific use cases.
The typical solar panel is composed of individual solar cells, each of which is made from layers of silicon, boron and phosphorus. The boron layer provides the positive charge, the phosphorus layer provides the negative charge, and the silicon wafer acts as the semiconductor.
When the suns photons strike the surface of the panel, it knocks out electrons from the silicon sandwich and into the electric field generated by the solar cells. This results in a directional current, which is then harnessed into usable power.
The entire process is called the photovoltaic effect, which is why solar panels are also known as photovoltaic panels or PV panels. A typical solar panel contains 60, 72, or 90 individual solar cells.
There are 4 major types of solar panels available on the market today: monocrystalline, polycrystalline, PERC, and thin-film panels.
Also known as single-crystal panels, these are made from a single pure silicon crystal that is cut into several wafers. Since they are made from pure silicon, they can be readily identified by their dark black color. The use of pure silicon also makes monocrystalline panels the most space-efficient and longest-lasting among all three solar panel types.
However, this comes at a cost a lot of silicon is wasted to produce one monocrystalline cell, sometimes reaching over 50%. This results in a hefty price tag.
As the name implies, these come from different silicon crystals instead of one. The silicon fragments are melted and poured into a square mold. This makes polycrystalline cells much more affordable since there is hardly any wastage, and gives them that characteristic square shape.
However, this also makes them less efficient in terms of energy conversion and space, since their silicon purity and construction are lower than monocrystalline panels. They also have lower heat tolerance, which means they are less efficient in high-temperature environments.
PERC solar panels
are an improvement of the traditional monocrystalline cell. This relatively new technology adds a passivation layer in the rear surface of the cell that enhances efficiency in several ways:
It reflects light back into the cell, increasing the amount of solar radiation that gets absorbed.
It reduces the natural tendency of electrons to recombine and inhibit the flow of electrons in the system.
It allows greater wavelengths of light to be reflected. Light waves over 1,180nm cant be absorbed by silicon wafers and simply pass through, so they end up heating the cells metal back sheet and reduce its efficiency. The passivation layer reflects these higher wavelengths and stops them from heating up the back sheet.
PERC panels allow greater solar energy collection in a smaller physical footprint, which makes them ideal for limited spaces. They are only slightly more expensive to produce than traditional panels, due to the added materials needed, but they can be manufactured on the same equipment, and can end up having a lower average cost per watt due to their efficiency.
To get a better feel for the benefits of PERC panels, check out our blogThin-film panels are characterized by very fine layers that are thin enough to be flexible. Each panel does not require a frame backing, making them lighter and easier to install. Unlike crystalline silicon panels that come in standardized sizes of 60, 72, and 96-cell counts, thin-film panels can come in different sizes to suit specific needs. However, they are less efficient than typical silicon solar panels.
Cadmium telluride (CdTe)
Amorphous silicon (a-Si)
Copper indium gallium selenide (CIGS)
CdTe has the same low-cost advantage as polycrystalline cells while possessing the lowest carbon footprint, water requirement, and energy payback time of all solar panels types. However, the toxic nature of cadmium makes recycling more expensive than other materials.
Amorphous silicon panels (A-Si) derive their name from their shapeless nature. Unlike mono-and polycrystalline solar cells, the silicon is not structured on the molecular level.
On average, an a-Si cell requires only a fraction of the silicon needed to produce typical silicon cells. This allows them to have the lowest production cost, at the expense of efficiency. This is why a-Si panels are suited for applications that require very little power, such as pocket calculators.
CIGS panels use a thin layer of copper, indium, gallium, and selenium deposited on a glass or plastic backing. The combination of these elements results in the highest efficiency among thin-panel types, though still not as efficient as crystalline silicon panels.
Monocrystalline panels have an efficiency rating over 20%.
PERC panels add an extra 5% efficiency thanks to their passivation layer.
Polycrystalline panels hover somewhere between 15-17%.
CIGS panels have an efficiency range of 13-15%.
CdTe ranges between 9-11%.
a-Si have the lowest efficiency at 6-8%.
Highest (5% more than monocrystalline)
Monocrystalline20% and up
Polycrystalline15-17%
Copper indium gallium selenide (CIGS)13-15%
Cadmium telluride (CdTe)9-11%
Amorphous silicon (a-Si)6-8%
Monocrystalline cells have the highest power capacity, thanks to their single-crystal construction that allows a higher output rating in a smaller package. Most monocrystalline panels can generate up to 300w of power capacity.
Recent advances in solar technology have allowed polycrystalline panels to bridge the gap. A standard 60-cell polycrystalline panel is now capable of producing between 240-300w. However, monocrystalline panels still beat polycrystalline in terms of power capacity per cell.
Because thin-film panels dont come in uniform sizes, there is no standard measure of power capacity, and the capacity of one thin-film panel will differ from another based on its physical size. In general, given the same physical footprint, conventional crystalline panels output more power than a thin-film panel of the same size.
Monocrystalline panels (or modules as they are technically known) carry a hefty price tag, due to its energy-intensive and inefficient manufacturing process with only a 50% yield for every silicon crystal.
Polycrystalline modules are cheaper because they make use of the crystal fragments leftover from monocrystalline production, which results in a simpler manufacturing process and lower production costs.
Among thin-film solar panels, CIGS is the most expensive, followed by CdTe and amorphous silicon. Apart from the lower acquisition cost, thin-film modules can be easier to install thanks to their lighter weight and flexibility, which lowers the cost of labor.
While the total cost of residential systems has declined by more than 65% over the last decade, the soft cost of a system has
actually risen
from 58% of total system cost in to 65% in .
For more information about soft costs, check out our article on the
soft costs in the solar industry
Are you interested in learning more about Polycrystalline 72 Cell Solar Panel? Contact us today to secure an expert consultation!
Additional resources:, and whats being done to reduce them.
Panel (Module) type Average Cost per Watt PERC$0.32-$0.65
Monocrystalline$1 $1.50
Polycrystalline$0.70 $1
Copper indium gallium selenide (CIGS)$0.60 $0.70
Cadmium telluride (CdTe)$0.50 $0.60
Amorphous silicon (a-Si)$0.43 $0.50
Note that these figures dont include the cost of installation and labor. With labor and other overhead factors, the total can rise to $2.50 to $3.50 per watt.
The temperature of a solar panel can affect its ability to generate energy. This loss of output is reflected through the temperature coefficient, which is a measure of the panels decrease in power output for every 1°C rise over 25°C (77°F).
Monocrystalline and polycrystalline panels have a temperature coefficient between -0.3% / °C to -0.5% / °C, while thin-film panels are closer to -0.2% / °C. This means that thin-film panels can be a good option for hotter environments or places that experience more sunlight throughout the year.
The updated International Building Code of requires solar panels to match the fire rating of the roof where they are installed. This is to ensure that the modules do not accelerate the spread of flames in the event of a fire. (California goes one step further by requiring the whole PV system, which includes the racking system, to have the same fire rating).
As such, solar panels now carry the same classification rating as roofs:
effective against severe fire test exposure
flame spread should not exceed 6 feet
required for wildland-urban interface areas, or areas with high fire severity and wildfire risk
effective against moderate fire test exposure
flame spread should not exceed 8 feet
effective against light fire test exposure
flame spread should not go beyond 13 feet
Solar panels are also
tested for hail impacts
.
UL and UL standards address hail storms, by dropping 2-inch solid steel spheres on solar panels from a height of 51 inches, and by firing 1-inch ice balls on PV panels with a pneumatic cannon to simulate hail impacts.
Because of their thicker construction, crystalline panels can withstand hail hitting at speeds of up to 50mph, while thin-film solar panels carry a lower rating due to their thin and flexible nature.
While there is no formal solar classification rating for hurricanes, the Department of Energy recently expanded its
recommended design specifications
for solar panels to safeguard against severe weather.
The new recommendations include:
Modules with the highest ASTM E-15 rating for snow and wind loading in both the front and back.
Fasteners with true locking capability based on DIN standard
The use of through-bolting modules with locking fasteners instead of clamping fasteners
The use of 3-frame rail systems for improved rigidity and support against twisting
Tubular frames over open-shaped C channels
Perimeter fencing around PV systems to slow down wind forces
LID is a performance loss commonly seen in crystalline panels during the first few hours of sun exposure. This happens when sunlight reacts with oxygen traces left over from the manufacturing process, which affects the silicon lattice structure.
The LID loss is directly tied to the manufacturing quality and can range from 1-3%.
Highest
High
Middle
Highest to lowest:
CIGS
CdTe
a-Si
EfficiencyHighest (5% more than monocrystalline)
20% and up
15-17%
CIGS: 13-15%
CdTe: 9-11%
a-Si: 6-8%
AppearanceBlack with rounded edges
Black with rounded edges
Blue with square edges
Depends on the thin-film variant
AdvantagesRequires least space
Most efficient
Highest power capacity
Less expensive alternative to PERC panels without the passivating layer
Middle option in terms of cost, efficiency and power capacity
Lowest cost
Easier to install
DisadvantagesMost expensive initially
Some earlier panels suffered from
light and elevated temperature induced degradation
High initial cost
Low yield in the manufacturing process
Low heat tolerance, not suitable in hot environments
Shorter lifespan than crystalline panels requires
more space
Least efficient
As crystalline and thin-film panels have their own pros and cons, the choice of solar panel ultimately comes down to your specific property and condition settings.
Those living in a dense area with limited space should opt for highly efficient monocrystalline modules to make the most of the physical space and maximize utility savings. If budget permits, going for PERC panels can lower energy generation costs even more in the long run.
Those with a sufficiently larger property can save on upfront costs by using polycrystalline solar panels, where a bigger panel footprint can offset the lower panel efficiency. However, a larger footprint could also mean added labor costs, so its not necessarily cheaper to get a higher quantity of less expensive panels. While the initial cost may be low, it may eventually be offset by reduced efficiency and higher operating expenses in the long term.
As for thin-film solar panels, these are best suited for locations where the heavy and labor-intensive installation of crystalline silicon is not feasible. Such locations can include commercial buildings with tight spaces or thin roofs; compact spaces such as recreational vehicles and watercraft; and areas that require flexible installation instead of rigid paneling.
Keep in mind that solar panels are designed for long-term installation, which can be as long as 25 years. So whatever type you choose to go with, make sure to do your homework to ensure that its the best option for your needs.
To learn more aboutWant to learn more about the solar industry?Youll hear from industry experts on everything from what to expect for the rest of , to how AI is affecting the industry, and more.Solar panels are used to collect solar energy from the sun and convert it into electricity.To get a better feel for the benefits of PERC panels, check out our blog 5 Important Benefits of PERC Solar Panels You Need to Know Unlike crystalline panels that use silicon, thin-film solar panels are made from different materials. These are:To learn more about solar fundamentals subscribe to our blog
Contact us to discuss your requirements of 72 Cell Solar Panel for Homes. Our experienced sales team can help you identify the options that best suit your needs.
22 0 0
Join Us
Comments
All Comments ( 0 )