Login

Your Position: Home > Valves > Control Valves vs. Regulators in Control Applications

Control Valves vs. Regulators in Control Applications

Author: Daisy

Jun. 24, 2024

Control Valves vs. Regulators in Control Applications

Understanding the differences between regulators and control valves is crucial in the automation industry. Each of these holds equal importance but have different functions and also operate in a different way. It is important to be knowledgeable about both solutions so that control process designers do not engage in major problems or waste money and resources.

Are you interested in learning more about regulating ball valve? Contact us today to secure an expert consultation!

Understanding the Difference

First, in order to understand the differences between regulators and control valves we should look into the components of each. In terms of design, a typical control loop allows control valves to employ a range of process variables. This depends on which variable is being measured for control (flow, level, temperature, pressure&#;). The process control variable is first measured by a sensor or transmitter and then sent to a host control system. More times than not, this system is known as the DCS or Distributed Control System. This system is responsible for interpreting how the valve should respond to a deviation from the set point value (predetermined). After this occurs a signal is communicated back to the DCS control which in return reports the degree of which the actuator needs to close or open the valve in order to return back to the predetermined set point.

 

Operationally, the main difference between a control valve and a regulator is that regulators are better defined as process powered valves without the demand for an external power or even an instrument air source to operate. Typically, a regulator applies the pressure of the controlled process fluid against a diaphragm. The same diaphragm then rejects a compressed spring in order to achieve forced balance with the diaphragm at a given set pressure. If there is any change in the controlled pressure the diaphragm is forced to move. This then causes the flow area of the regulator to change which allows more or less process fluid to flow.

 

Since the use of process fluid pressure is a means for control, regulators are functional as pressure control valves.

 

Another difference comes in relation to the design pressure rating of the body of the regulator. Control valves are able to handle the same pressures on the outside of a valve as they are on the inlet side. However, a regulator may have a lower pressure rating on the control pressure side of itself (the regulator). Why? You might ask. This is because the process fluid pressure is being directly applied to the components of the diaphragm casing.

One more difference is speed. Compared to control valves, a regulators speed of response is faster. Regulators are able to respond instantly to changes occurring in the controlled pressure.

 

As far as maintenance they are also easier to maintain and have no volatile emissions.

 

Control valves, however, are available in larger sizes and are in higher pressure classes than regulators are.

Choosing the Right Solution for the Right Application

Regulators, usually, are associated with a lower cost for maintenance and installation. But it is also important to keep in mind that many projects spec in the use of an actuator with its valve for their control applications.

  • Tank Blanketing
This is also known as blanket gas control and is the process of maintaining the pressure of a mass of inert gas at the top of a tank or container which prohibits contact with the outside air. Regulators are often used for the pressure-reducing valve as well as for the back pressure regulator because they are able to monitor the tank pressure directly as well as respond more quickly to any changes. However, it may be necessary to use a valve with a throttling actuator if it is not possible to set a safety relief valve to a pressure below the design pressure of the regulator.
  • Differential Pressure Control
In oil and gas production, maintaining production pressure coming from the rig is critical. The wellhead pressure is continuously varying. This means that a positive differential pressure from the pipeline must be maintained without the line being over pressured. If the extraction happens in an area where power supply is available, control valves can be used. However, some production sites are located in remote areas and thus do not have access to power supply, eliminating valve actuators as an option. Regulators, on the other hand, are capable of maintaining differential pressure between the reference point and outlet pressure without the use of power supply.
  • Boiler and Heater Control
This can be understood as an application that commonly uses a control valve and a regulator together. In normal operational standards, a large volume of gas is required to fuel the system. This typically results in using a high-capacity valve used for control.
  • Extreme Service Conditions
Often times the term known as service is applied to automation applications where things such as excessive vibration, cavitation (formation of vapor cavities in a liquid causing excessive wear), or flashing occur due to excessive pressure drop across the valve. If bubbles or flash evaporation with moderate pressure drops are expected, or any pressure drops, regulators should be avoided. Control valves have trim designs capable to manage wide variations or extreme spikes of pressure as well as reduce potential damages due to cavitation. 

In some situations a control actuator and valve package or a regulator should not be used. This is due to the fact that certain applications mean technical advantages for either a control valve or a regulator. Some of these examples include:This is also known as blanket gas control and is the process of maintaining the pressure of a mass of inert gas at the top of a tank or container which prohibits contact with the outside air. Regulators are often used for the pressure-reducing valve as well as for the back pressure regulator because they are able to monitor the tank pressure directly as well as respond more quickly to any changes. However, it may be necessary to use a valve with a throttling actuator if it is not possible to set a safety relief valve to a pressure below the design pressure of the regulator.In oil and gas production, maintaining production pressure coming from the rig is critical. The wellhead pressure is continuously varying. This means that a positive differential pressure from the pipeline must be maintained without the line being over pressured. If the extraction happens in an area where power supply is available, control valves can be used. However, some production sites are located in remote areas and thus do not have access to power supply, eliminating valve actuators as an option. Regulators, on the other hand, are capable of maintaining differential pressure between the reference point and outlet pressure without the use of power supply.This can be understood as an application that commonly uses a control valve and a regulator together. In normal operational standards, a large volume of gas is required to fuel the system. This typically results in using a high-capacity valve used for control.Often times the term known as service is applied to automation applications where things such as excessive vibration, cavitation (formation of vapor cavities in a liquid causing excessive wear), or flashing occur due to excessive pressure drop across the valve. If bubbles or flash evaporation with moderate pressure drops are expected, or any pressure drops, regulators should be avoided. Control valves have trim designs capable to manage wide variations or extreme spikes of pressure as well as reduce potential damages due to cavitation.

Knowledge-based decision

Understanding the differences between regulators and control valves is crucial in the automation industry. Each of these holds equal importance but are different in the way they function and operate. If one understands the capabilities and functions of valve actuators as well as regulators, those whom are tasked to select from the two options will be able to select with confidence.

 

Regulators versus Control Valves: What's the Best Fit?

THE DIFFERENCES

Regulators and control valves are different in function and the way they operate in a few ways.

The design of a typical control loop allows control valves to manipulate a range of process variables depending on which variable is measured for control. Examples of this include valves with capabilities for control of flow, level, temperature and pressure. The process control variable is measured by a sensor/transmitter and then communicated to a host control system, which is typically a distributed control system (DCS). The DCS interprets how the valve should respond to a deviation from the predetermined setpoint value, then communicates a signal back to the DCS controller reporting the extent to which it needs to open or close to return to the predetermined setpoint. The DCS controller receives that signal and then sends a signal to the valve&#;s positioner, which then converts the electronic signal to a pneumatic signal, thereby physically making the change in the valve&#;s throttling position.

The main operational difference between a control valve and a regulator is that, contrary to the control loop design mentioned above, regulators are process-powered valves without the need for an external power or instrument air source to operate. A regulator typically applies the pressure of the controlled process fluid against a diaphragm. This diaphragm then opposes a compressed spring to achieve force balance with the diaphragm at a given set pressure. Any change in the controlled pressure causes the diaphragm to move, which causes the flow area of the regulator to change, allowing more or less process fluid through the regulator. A simple example of a pressure-reducing, direct-operated regulator design compared to a control valve in a control loop is shown in Figure 1.

Because of the use of process fluid pressure as a means for control, regulators are functional as pressure control valves.

As a process-powered device, the controlled pressure must change to modify the flow rate through the regulator. An example is a pressure-reducing regulator that controls fuel gas pressure for a compressor engine. If the rate of fuel gas consumption for the compressor engine increases, gas pressure in the line between the regulator and compressor engine will decrease. This reduced pressure, acting on the diaphragm, will cause spring force to overcome the force generated by the diaphragm. The diaphragm is connected to the regulator&#;s valve plug, and when spring force moves that diaphragm, the regulator&#;s valve plug opens further, allowing additional fuel gas through an expanded flow area. As long as this increased consumption rate is maintained, the regulator will hold downstream pressure constant at a value slightly below the set pressure. This concept is referred to as droop or offset. It is the allowable deviation from set pressure to meet downstream consumption.

Another difference is related to the design pressure rating of the regulator&#;s body. While a control valve can handle the same pressures on the inlet side as the outlet side of a valve, a regulator may have a lower pressure rating on the control pressure side of the regulator. This is because the process fluid pressure is applied directly to the internal components of the diaphragm casing. It would be similar to applying process pressure directly to the actuator portion of a control valve assembly instead of the controlled instrument air supply pressure. While a few exceptions to this rule exist among high-pressure, pilot-operated regulators, both the inlet and outlet side design pressures need to be considered in selecting a regulator.

On the other hand, control valves are available in much larger sizes and higher pressure classes than regulators. They can handle any process fluid by selecting compatible metallic trim materials. Regulators, in almost every case, will have at least one elastomeric material in contact with the process fluid, which means limited use in some highly corrosive applications.

Figure 2 depicts typical advantages of regulators and control valves.

To reduce droop and maximize accuracy, a pilot-operated regulator can be used. These regulators require only 1&#;3% droop or deviance from setpoint to achieve full capacity. Direct-

operated regulators need 10&#;20% droop. Pilot-operated types achieve this accuracy by adding a small, direct-operated regulator (the &#;pilot&#;) to the main regulator, which introduces gain to the system and increases sensitivity to changes in the controlled pressure. Pilot-operated regulators have much larger orifices as well, which allows higher capacities as well as heightened accuracy compared to self-operated regulators.

Additional resources:
How does Flow-efficient tilting disk check valve work?

For more plastic lined valvesinformation, please contact us. We will provide professional answers.

CRITERIA OTHER THAN USE

When choosing between a regulator and a control valve, design considerations outside of the process data itself need to be considered.

For example, if diagnostic monitoring or predictive maintenance feedback are required, only a control valve that can communicate diagnostic data to a control system should be considered. On the other hand, if the valve&#;s operation is critical to the facility, a regulator would be the more appropriate choice because auxiliary power is not required to maintain its functionality.

While maintenance and total installed costs are typically lower for regulators, project specifications or site standards may require a control valve. Also, certain applications mean technical advantages for either a control valve or a regulator and other applications create conditions where one or the other should be avoided altogether. Here are five example applications:

BLANKET GAS CONTROL

Blanket gas control, or tank blanketing, is the process of maintaining the pressure of a mass of inert gas, typically nitrogen, at the top of a tank or vessel, thereby preventing exposure to, or release of, a liquid product to the atmosphere. For a utility header line, for example, nitrogen, which is typically 50 psig to 200 psig, is reduced to a pressure of just inches of water column. This is done to maintain the gas blanket for when liquid product is pumped out of the tank or when environmental temperature changes cause a pressure change inside the tank. Similarly, a pressure control device might be used to relieve gas from the tank or vessel in the event pressure rises when loading liquid product.

Regulators most commonly are used for both the pressure-reducing valve and back pressure regulator (which would be a non-ASME relief valve). This is because the regulators can monitor the tank pressure directly and respond more quickly to changes in blanket gas pressure, preventing overpressure or underpressure from occurring on the tank.

There may be instances for which the tank design pressure is higher than the design pressure of the regulator on the side maintaining low-pressure control. The regulator design for tank blanketing applications typically includes large diaphragms that are very sensitive to changes in low pressures and can be damaged by pressures well above the setpoint. In these cases, setting a safety relief valve to a pressure below the design pressure of the regulator is important. If this action is not possible, it may be necessary to use a control valve even for tank blanketing applications.

PLANT FEED GAS SUPPLY

Figure 4 is an example of a wide open monitor, where the pressure between the two regulators is not controlled. A working monitor arrangement would add a second pilot to the monitor, which would control the intermediate pressure between the two regulators. This would provide a means to prove the monitor regulator is operational and capable of throttling pressure if the worker ever failed to open.

SEVERE SERVICE

The term severe service is typically applied to valve applications where excessive noise, cavitation or flashing occur from excessive pressure drop across the valve. For gas applications that predict high noise levels, instead of adding insulation or another path treatment noise-masking method, source treatment can be applied to attenuate the noise within the valve itself. A small number of regulators have trim types capable of noise attenuation, but attenuating control valve trims are more widely available. These can be customized to shift the sound frequency out of both the audible and the vibration-inducing range, thus avoiding damage to the valve, piping and downstream equipment.

DIFFERENTIAL PRESSURE CONTROL

Differential pressure control applications in oil and gas production are designed to maintain production pressure from the wellhead outlet at a point above the pressure of the pipeline into which the fluid will be loaded for transmission. Differential pressure control is needed because wellhead pressure is constantly varying, and a positive differential pressure from the pipeline must be maintained without overpressuring the line. These wells are typically in remote areas without access to instrument air or other actuator power supplies, which eliminates control valves from consideration. Regulators are capable of maintaining differential pressure between a reference point such as the pipeline pressure, and outlet pressure from the regulator. Direct-operated regulators are commonly used in these applications because they provide the fastest speed of response to pressure fluctuations or changes.

HEATER OR BOILER FUEL GAS CONTROL

Boiler and heater fuel gas control is an application that commonly uses a control valve and regulator in tandem. This application takes fuel gas from a header line in the 100-psig to 150-psig range and reduces pressure to less than 1 psig while keeping up with fuel demand for the boiler or the heaters. During normal operation, a large volume of fuel gas is required, which typically results in using a high-capacity ball valve for control. In this system, a very-low-flow condition occurs when the heaters/burners are not fired, but the boiler or heater pilot lines must be maintained. A pilot-operated regulator is typically installed parallel to the control valve for very accurate low flow and pressure control (Figure 6).

CONCLUSION

Pressure control valve selection will always be a critical aspect of facility design and maintenance. By understanding the capabilities and functionalities of both control valves and regulators, engineers tasked with selecting control valves or regulators can start with an optimal solution in mind or reduce rework for their pressure control applications.&#;

Keith Erskine is regulator business manager at Puffer-Sweiven, Emerson&#;s local business partner in South Texas and Latin America. Most of his career has been focused on control valve and regulator applications at engineering contractors with a diverse scope of upstream oil and gas, refining and chemicals projects. Reach him at .

Vincent E. Mezzano is a Fluor Fellow and Fluor&#;s subject matter expert in control valves, on/off valves, actuators and relief valves. Mezzano is chairman of ISA SP96 Valve Actuator Committee, ISA SP 75.05 Control Valve Terminology and ISA SP 75.24 Control Valve Actuator Sizing and Selection, a member of ISA Standards and Practices Board, and a voting member of ISA SP 75 Control Valves. He is also an active member of the PIP Process Control Team. Reach him at .

This article is based in part on a presentation on differentiation of capabilities and proper applications of control valves versus regulators delivered at the Emerson Global Users Exchange.

RELATED CONTENT

  • The Actuators That Drive Subsea Operations

    Subsea development includes different types of activities such as exploration, drilling, completion and production.Subsea manifolds are the arrangement of piping, valves, connections, structures and the foundation used in the subsea production system to receive, combine and distribute the hydrocarbon fluid

  • Direct-Sealing Diaphragm Valves Offer Novel Approach

    As modern industries such as hydrogen electrolysis and biotech make dramatic technical advances, engineers and researchers must sometimes turn to nontraditional process control systems.

  • The Role of Valves in HAZOP Studies

    Process hazard analysis (PHA) is required by U.S.

    If you want to learn more, please visit our website why we use butterfly valve.

48 0

Comments

Join Us